
hlternational Journal of Theoretical Physics, Vol. 21, No. 12, 1982 

Modular Implementation of Concurrency 

Lutz Priese 

Fachbereich Mathematik-lnformatik, Universitiit, D-4790 Paderborn, Federal Repubfic 
of Germany 

Received May 8, 1981 

We try to develop a deeper understanding of "concurrent computations" by 
stating a precise and formalized conception of a realization of a concurrent 
computation. Within this formal apparatus we can present exact mathematical 
proofs for certain hierarchies of concurrent systems. As the following systems 
have a modular structure they might be helpful for a further theory of very fast 
hardware circuits without a global synchronizing clock. 

1. INTRODUCTION 

In recent developments concurrency becomes a more and more im- 
portant feature of computers. On the software side first attempts have been 
made to design concurrent languages and automatic translations from 
sequential into parallel programs. On the hardware side a global concurrent 
behavior is quite common. However, on the microscopic level of hardware 
we still follow the ancient approaches of "synchronized" Boolean logic. For 
a future design of very fast computers we at once meet some physical 
constraints: the faster we operate the more uncertain becomes location and 
propagation of signals, stability and switching time of gates, etc., with the 
unwanted and contradictory consequence of delaying a global clock for 
these processes for security reasons. 

A quite radical escape of this circle is a consequent renunciation of 
synchronization. Instead of a global time we may imagine the time ordering 
as a lattice. For switching circuits this implies that any wire and gate has its 
own local time. A logical design for such circuits should ensure that the 
overall behavior does not become destroyed by local time properties, such as 
propagation speed of signals or switching time of gates--with the conse- 
quence that we do not have to delay any operation for security reasons! 

993 

0020-7748/82/1200-0993503.00/0 �9 1982 Plenum Publishing Corporation 



994 Priese 

Also one should not operate with hand-shaking signals that cost too much 
waiting time. 

Such a consequence is not as severe as it may appear at a first glimpse, 
owing to our quite good understanding of "asynchronous" logics from the 
work of many researchers, where especially C. A. Petri has to be named. 
Petri nets are well developed and understood, and have become the most 
important model of an asynchronous logic today. 

However, an approach to implement Petri nets into a hardware design 
meets some difficulties. Firstly: it is by no means clear what a concurrent 
computation or a realization of such a computation is. Secondly: Petri nets 
have no modular structure, as a solving of conflicts is not explicitly 
expressed in the nets and may involve unbounded parts of the whole 
structure. The aim of this paper is a contribution to a theory of modular 
concurrency. This approach and motivation is not new. There are lots of 
papers on asynchronous modules--let us just mention the previous works of 
Dennis, Patil, and Furtek at MIT. However, all these previous papers have a 
certain lack of mathematical formalism and preciseness. This statement 
should become more evident if one regards, for example, the important 
impossibility results of Patil (1971) ("Not any Petri net can be realiTed by a 
simple net") and Kosaraju (1973) ("Not any inhibitory Petri net can be 
realized by a Petri net"), that present impossibility proofs without a precise 
definition of the concept of a realization. Also one has to be very careful 
with conceptions of computation. There are the well-known concepts of 
"weak" and "strong" computability of Petri nets by Hack (1976) and 
Lipton (1976), that are very powerful for certain proofs on reachability 
properties, but that give no insight into computation properties of asyn- 
chronous systems at all. The same holds for language conceptions. 

Fortunately there are some recent attempts to clarify the conception of 
a realization (or simulation) of a concurrent computation by Jensen (1980), 
Kasai and Miller (1979), Kwong (1977), and Berthelot, Roucairol, and Valk 
(1979). But these papers present very general properties of realizations and 
do not consider the peculiarities of concurrency and thus might not help in 
an understanding of concurrent computations. 

The plan of this paper is to present a (hopefully) reasonable concept of 
realization of concurrent systems (Section 2) and to present several nontriv- 
ial results on modular realizations of concurrent systems (Section 3) that 
should help to develop a theory for future fast and intrinsic asynchronous 
computers. 

2. REALIZATION, COMPUTATION 

It is quite convenient to study concurrency on such abstract levels as 
state systems and/or  transition systems. 



Modular Implementation of Concurrency 995 

Definition 1. An  S system (state system) A is a tuple A = (S, ~ ) of a 
set S (of states) and a relation --, C_ S • S (of transitions). A T system 
(transition system) A is a tuple A = (S, Z, --, ) of an S system (S, --, ) and a 
finite set Z (of names or labels for transitions), such that there exists for any 
e E Z a relation ~ e C S X S with 

""> ~ U " ->e  

e E Z  

We use the following notation: By induction on N (nonnegative integers) 
and Z*: 

VK C_ S: Vs, s ' E  S: V x E  Z*: V e E  Z: 

0 
s-- ,s '  : ~ s = s '  ands,  s ' E K  

K 

I 
S -'-~S t 

K 
�9 ~ s ~ s '  ands,  s ' ~ K  

n+l~ t ~ :1 ~ It" A n  I s s : ̂  .~s~,__,,:s--,s~an,,s~--,s' 
K K K 

S ~ S ' "  3 n E N o : S - - - ~ s  
K K 

r/ t ~ r/ t 
S " ' ~ S  " ~ S'--~S 

S 

n ! 

s ~ s '  : ~ 3 n ~ N 0 :  s - - , s  

0 
S --->hS t " ~ S -'-~S ~ 

S ""> x e S  

S .---> x 

: ~ 3 s l E S :  S ~ x S  I ands  I--,es' 

: ~ 3 s ' E S :  s--,xS' 

s ~ :  = ( s ' e  S: s=s') 

K ' :  = U s ~ 
s E K  

An S or T system A has a dimension d : ~  3 set $1: SC_Nao•  Some 



996 Priese 

coordinate i of No d of a d-dimensional system A is called 

k safe with respect to S' C_ S : ~ Vs E S'  - : ( s )  i <<- k 

safe with respect to S'  : ~ i is k safe for some k 

Here ( )~ denotes the ith coordinate of a vector. A is called (k)  safe (with 
respect to S') : ~ all coordinates i of I~0 a of A are (k)  safe (with respect to 
S'). 

Note that any system A of dimension d is also of any lower dimension 
as we may redefine the set S 1. However, it will always be obvious from the 
context what dimension and what set $1 is actually meant. 

Any Petri net, N, is a T system in a canonical sense. Let PN denote the 
set of places and E u the set of events of N. Then N = (N0 a, E N ,  -'> ) of 
dimension d = #PN, where s --, es' denotes that in state (marking) s event e 
can fire and reach the new state s'.  In the following "e, e ' ,  p ,  and p '  denote 
as usual the sets of places that are connected with the event e by arcs 
pointing to, or, respectively, from, e and of events that are connected with 
the place p by arcs pointing to, or, respectively, from, p. 

As an example, 

t !  
S t 

K x 
fo r s ,  s ' E N o  a, K C N0 a 

in a Petri net of dimension d means that the "firing sequence" x of length n 
has fired from marking s to marking s', where all intermediate markings 
belong to the subset K. Note that here we have combined some of the 
notation of Definition 1 that have not been stated in this combination but 
should be self-evident. 

With this important model for concurrency in mind we also call the 
coordinates of a d-dimensional system A the places of A and denote by PA 
the set of all places of A. Note that #PA = d or #PA = d + 1, depending on 
whether S~ = 0 or not. We need S 1 as we will also operate with automata- 
theoretical models where not all components of the states should be 
interpreted as signals or tokens. We will write a state of a d-dimensional 
system A as 

s =  ( s ( p t )  . . . . .  s ( p a ) , s ( p a + l )  ) withp~E P A a n d s ( p a + , ) E S  ~ for 

s =Ngxs, 



Modular Implementation of Concurrency 997 

We need a few more definitions: 

Definition 2. A T system A = (S, Z, --, ) is called 

locally determined: 
commutative : 

persistent : 

confluent : 

modular : 

VeE Z: Vs, s', s " E  S: (s ~ eS' and s ~ eS"> S '= S") 
Ve, e 'E  Z: V s E S :  (S'--~ ee' ands  ~ e,e>- 
3s' ~ S: s ~ ee'S' and s -- ,  e" e S t )  

Ve, e' ~ Z: V s E  S: ( e :/: e' and s --" e ands  ~ e ' >  
S ~ ee ' )  

Vs, s ' , s " E S :  ( s ~ s '  a n d s = s " > - 3 s +  ~ S :  
s ' ~ s  + and s " ~ s  + ) 
A is persistent and commutative 

As locally determined and modular systems are confluent--see,  e.g., 
Keller (1975)--and confluency is certainly too restrictive for a general 
theory of concurrency, modular concurrency must handle locally nonde- 
termined systems. We will introduce two such systems, modular Petri nets 
and APA nets, in the third section. 

Definition 3. An S system B = (  S s, --'B) realizes an S system A =  
(SA, ~ A )  iff: 3K: SA- - ,P (SB) - -O ,  S A ~ s ~ K s :  Vs, s 'ESA: VgEKs:  

(i) s- - ,As '>-3g '~K, , :  g ~ s g '  
(ii) 3 U ~ K s :  ~ B U > ' S ~ A S '  

(iii) Vs~ g = B s ~  = U,es Ks): s ~  + 
B realizes A promptly iff in addition there holds 

(iv) VsESA:  VgEK~: 3 k E N :  VK C_S: Vs~ 

_ k  0 
s --,s > K M K ~ ( , ) v ~  

K 

w i t h K n ( ~ ) : : { s + E S B : 3 s ' E S  A ' s = A s '  and s+EK~,} 

Let us briefly discuss these requirements: By (i) any computation in A 
can also be fulfilled in B, but may require more steps. All computations of B 
that start from some state attached to some state of A (i.e., the states of K + ) 
and (ii) lead to an attached state again can also be done in A, or (iii) that 
lead to an intermediate state can always be prolonged in B to an attached 
state in K +. In other words, B reflects all computations of A (via some 
coding K of the states) and no hang-ups are introduced due to the process of 
realization. For  a prompt realization (with a slow-down factor ~< k) it is 
ensured that after at most k steps of computation in B, starting with a state 



998 Priese 

attached to some state s of A, a correct result has been achieved, i.e., B has 
met a state s + ~ K~{s). 

This conception has been developed by the author (Priese, 1980a) 
independently from other attempts. It is very closely related to the indepen- 
dent definition of a reduction by Kwong (1977), Jensen (1980), and Berthelot, 
Roucairol, and Valk (1979), and also Kasai and Miller (1979). 

This definition states some very general principles for simulation and 
realization of the computational aspects in various models but does not 
refer to concurrency itself. For a further theory of concurrent systems we 
have to specify more realization restrictions. The real difficulty in concur- 
rent, asynchronous systems is the intercommunication of such systems. This 
general remark includes for example synchronization problems and ques- 
tions of observability. It seems to me that the handling of interfaces is a 
good distinction for synchronous and asynchronous systems and should be 
formalized and added to our realization conception. 

Definition 4. An I /O  system A is a T system A = ( SA, Z, --* ) with some 
dimension d and two distinguished sets IA,O A C_ PA with IAfqO A = ~  of inputs 
and outputs such that there holds 

(i) SAC_N~XN'~XN1oXS1, for some set S 1 and n + m + l = d  and 
#IA=n,  #OA=m 

(ii) Vs, s'ES: s--,s'>'s(p)>-s'(p) Vp~IA, and s(p)<-s'(p) VpEO A 
An I / O  procedure, P, for an I / 0  system A is a relation P C_ S X S with 

Vs, s '~S: sPs'>-s(p)<-s'(p) VpEIA, 
s (p )~  s'(p) VpE OA, and 
s ( p )  = s ' ( p )  v p ~  wA: = ~'A - (ZAUOA) 

The T system (A, P): = (SA, Z, --*AU P) is called the P closure of A. By 

-. .> 

A,P 

we denote the relation --'AUP and translate all notations of Definition 1 
also for this relation. 

The interface of an 1 / 0  system is given by its inputs and outputs. 
s (p )=r  shall be read as meaning that in state s the input (output, or 
"inner") wire p (for p E IA, OA, or I,V A, respectively) carries r signals. An 
I / 0  system may take off signals from its input wires and send signals on its 
outputs but not vice versa [see (ii)] and can communicate with its environ- 
ment via I / 0  procedures that put signals on the inputs and take signals 
from the outputs of A. When we operate with distributed, asynchronous 
systems we may regard a module A to be an I / 0  system with an interface 



Modular Implementation of Concurrency 999 

IA, 0 A or we may regard it as a closed system where its communication P 
via its interface is corporate with its transitions, (A, P). 

Definition 5. An I / 0  system B realizes an I / 0  system A (promptly) iff 
the properties (i)-(iii) [or (iv), respectively] of Definition 3 are fulfilled and 
there holds (with the notations of Definition 3) in addition 

(0) 3r IAUO A ~ P(IBUOB): 
Vp~IA: r ~ o  
Vpe oA: r :~o 
Vp, p 'E  IAUOA: p ~= p'>- r 1 6 2  = 0  
IBuo, = U r 

(i) zero coding: Vp E 0 A : Vs E SA: Vg~ Ks: 
[s(p) = 0 ~ V p E ' I ' ( p )  noB: g(p) = 0] 

(ii) monotony: Vs, s 'E SA: Vp E 1AUOA: 
s (P)<~s ' (p ) i fpEIA ) 
s( p ) >/s '( p ) if p ~ 0 A Vg E K,: 3 g' E K s, such that there holds: 
s(p ' )= s'(p') Vp'E P A - {p} 
~(/~) <~ y(/7) V/re r  
s(p) >~ s '(p) v f f ~  d~(p)fqOs, and 
~(~)= U(fi) v~e  es-- r  

(iii) linearity: Vsl, s2e SA: V,.~ 1 e Ks:  V.{ze Ks :  Vp �9 IAUOA: 

( =~s2(P') f~ >. 
I s3(p') forp'  p 

As several "hand-shaking" procedures operating with ready and ac- 
knowledge signals on different wires are quite common in the literature as a 
coding in realizations, forcing an input place, e.g., to become a pair of an 
input /output ,  we cannot demand �9 to be a mapping with eg(IA) C_ I s and 
##(OA) COS. The property zero-coding is only of technical interest and may 
be replaced by different properties. Monotony states that whenever we 
change a state s to a state s '  by merely adding some input signals a n d / o r  
removing some output signals, we can find for any state g attached to s a 
state g' attached to s '  where we have also only added some input signals 
a n d / o r  removed some output signals. Linearity states that if we can code an 
input or output p as g~(p) then we can use the same code for a further state 
~3 provided that ~t = ~2 on W~. This restriction is important as it ensures 
that a possible assimilation of input signals in g1 has also been done in g2- 
For a further discussion see Priese (1980b). 



1000 Priese 

It should be noted that such requirements are quite natural for concur- 
rent, asynchronous systems. Our realization conception is general enough 
that most "realization constructions" of the literature remain realization in 
this formal sense, and on the other hand restrictive enough to allow for 
strict proofs of impossibility results. 

In the sequel we need a simple technical lemma: 

Lemma and Definition. For any two I / 0  systems A and B where B 
simulates A with a state correspondence K and 1//0 mapping ~ and 
for any I / / 0  procedure P of A we define a relation Pr. �9 C_ Ss • SB 
as: Vg, g 'E SB: gPK,~g' : ~ 3s, s 'E  SA: ~ K s and g 'E K s, and sPs" 
and 

= 

Then there holds 
(i) PK,~ is an I / 0  procedure for B. 

(ii) The closed system (B, PK,~) realizes the closed system 
(A, P)  also with the state correspondence K. 

3 . ~ S ~ T S  

We will compare Petri nets with modular systems and give some proper 
hierarchy results. 

We need a brief informal outline on APA nets. An (asynchronous, 
parallel) automaton A is a tuple A = ( I  A, 0 A, S A, RA) of a set I A of input 
(wires), 0 A of output (wires), S A of states and a relation R A C_(P(1A)• SA) 
X ( @(0 A ) • S A ) of transitions. ((M, s), (N, s')) E R A means that the automa- 
ton A in state s may take off one signal from each of its input (wires) of M, 
switch to state s', and send out one signal on each of its outputs of N. There 
may be further signals on inputs of I A - M that will not be changed in the 
((M, s), (N, s')) transition. An APA net (asynchronous, parallel automata 
net) over some given automata A~ . . . . .  A n is a directed graph with copies of 
A~, . . . ,A ,  in its nodes and connections of inputs and outputs as directed 
edges with the restriction that any edge connects exactly one output of some 
copy with one input of the same or another copy of some automata. Such an 
APA net N is the T system A = (SA, ZA, --'A), where the states of S describe 
the distribution of signals (that may accumulate) on wires and local states of 
the component automata of N, Z A is the set of all copies of the automata 



Modular Implementation of Concurrency 1001 

A I . . . . .  A ,  in N, and  for any  B E  Z A the re la t ion  ~ B appl ies  wi th  s - ,  s s '  iff 
in the g lobal  s ta te  s of  N the c o m p o n e n t  B fulfills a local  t rans i t ion  with the 
new resul t ing g lobal  s ta te  s '  of N. A P A  (A 1 . . . . .  An) denotes  the class of  all 
A P A  nets over  A 1 . . . .  ,A n. 

I t  should  be  no ted  tha t  A P A  nets  are  very  closely re la ted  with  Kel le r ' s  
(1974) speed - independen t  modules ,  bu t  A P A  nets  a l low for an accumula t ion  
of  signals on  wires. Also,  any  A P A  net  is an I / 0  sys tem where  IA, O A are  
the sets of  inputs ,  outputs ,  respect ively,  of  c o m p o n e n t s  that  are no t  fur ther  
connected .  One  should  no te  that  A P A  nets  are  b y  def in i t ion  m o d u l a r  T 
systems,  as any  c o m p o n e n t  can lose its ab i l i ty  of  t r ans fo rming  a t rans i t ion  
only  by  mak ing  this t rans i t ion  or  ano the r  of  i ts a l lowed local  t rans i t ions  
( local  nonde te rmin i sm) .  

Tab le  I gives examples  of  a u t o m a t a  we will ope ra te  with. F igure  1 
presents  a set of  Petr i  nets  that  we regard  as a u t o m a t a  wi th  inpu t s  and  
ou tpu t s  and  that  m a y  be  swi tched together  to larger  nets  accord ing  to the 
cons t ruc t ion  p r inc ip le  Of A P A  nets.  As  an example ,  nets  cons t ruc ted  f rom 
the componen t s  I and  J solely will  r ema in  free choice Petr i  nets. By m o d u l a r  
Petr i  nets  we deno te  all Petr i  nets  tha t  are  cons t ruc ted  in this sense f rom 
these given componen t s .  P N ( I ,  J )  thus denotes  the class of  all m o d u l a r  
Petr i  nets cons t ruc ted  f rom I and  J .  

Definition 6. Let  C~, C 2 be  two classes of  I / 0  systems.  

C I C_C 2 : ~  V A E  Cl:  3 B ~ C 2 :  B realizes A p r o m p t l y  
C I ~ZC 2 :~  3 A E C 1 :  V B ~ C 2 :  B does  not  real ize A 

C1=C2 : ~ Ci C_C2 and C2 C C1 
C I C C 2 : ~ C 1 C_ C2 and  C2 Z'C1 

TABLE I. Examples of Automata* 

Name States Inputs Outputs Transitions Interpretation 

U a I, 2 3 1, a ---) 3, a Union of wires 
2, a--* 3, a 

I a 1 2, 3 1, a ---, 2, a Indeterministic choice 
l ,a -*  3, a 

F a 1 2,3 1, a - ,  {2,3}, a Fork of a signal 
J a 1,2 3 ( 1,2}, a ~ 3, a Join of two signals 
S a 1,2, 3 4, 5 { 1,2}, a --, 4, a Simple element 

{2,3}, a--, 5, a 
E a,b t,s ta, tb, s' t,a--*t~ Kind of a storage element 

t, b --, tb, b 
s, a --* s', b 
s, b --* s', a 

*Here s, M ~  s', N denotes a transition ((s, M),(s', N))E R. 



1002 Priese 

Fig. 1. Modular Petri nets. 

Thus for positive results we will require prompt realization but for negative 
results the absence of any realization. We now can state the main results: 

Let GPN denote the class of all generalized Petri nets; RPN the class of 
all restricted Petri nets; SM the class of all state machines; MG the class of 
all marked graphs; FC the class of all free choice nets; PFC the class of all 
pseudo-free-choice nets; SN the class of all simple nets; PN the class of all 
Petri nets; and APA the class of all APA nets over some finite automata 
(i.e., with finite sets of states, inputs, and outputs). These definitions are 
standard in the theory of Petri nets and may be found, for example, in Hack 
(1973). For any class C of nets we denote by 1-safe C the class of all 1-safe 
nets in C. 

Theorem 1. GPN = RPN, k-safe GPN = 1-safe RPN Vk E N. 

It should be noted that this results requires a new proof, as the old 
constructions in Hack (1975) give only hang-up-free but nonprompt or 
prompt but not hang-up-free realizations, whereas by Definition 6 our 
equality ensures hang-up-free and prompt realizations. However, such a 
proof is not too complicated. The next result is just a simple exercise: 

Theorem 2. SM= PN(U, 1) = APA(U, 1) 
M G =  PN(F, J )  = APA(F, J )  
FC= PFC - PN(U, I, F, J )  -- APA(U, I, F, J )  
SN = PN(U, F, J, S) -- APA(U, F, J, S) 

These classes also define a proper hierarchy modulo nonprompt realization 
The proof is not trivial and requires some work. 

Theorem 3. 

SM r MO tT"- 
). FC = PFC C SN C aN 

MG SM 



Modular Implementation of Concurrency 1003 

The following theorem presents some modular decompositions of general 
PN or APA: 

Theorem 4. PN -- APA = PN(U, F, J, A) = APA(U, F, J, E )  

1-safe PN = 1-safe APA 

= 1-safe PN(U, F, J ,  A) = 1-safe APA(U, F, J ,  S, E )  

= 2-safe APA(U, F, J ,  E )  

If one analyzes the proofs for Theorem 4 it turns out that Petri nets can 
be promptly realized by modular structures without a pairing of wires for 
hand-shaking procedures with ready and acknowledge signals, and that no 
signal accumulation in APA nets is needed to realize 1-safe Petri nets. 

To show the power of such a formalized approach we will present a 
classification of modules in PN-SN. We regard the four Petri nets A 0, A t, 
A2, and A 3 of Figure 2. A 0 is a Petri net not in S N U P F C  of greatest 
possible simplicity, as any Petri net in P N - ( S N  U PFC) must contain A 0 as 
a subpart. A 3 is Patti's solution of his three-smokers problem (Patti, 1971). 

Theorem 5. Not  all Petri nets can be promptly realized by some net 
of PN(U, F, J,  S, At). Any Petri net can be nonpromptly realized 
by some net of PN(U, F, J,  S, Ao). 

1-safe PN(U,  F, J ,  S, A2) .C 1-safe PN = 2-safe PN(U, F, J ,  S, A2) 

PN--PN(U,F,J,S, A3), 1-safePN=l-safePN(U,F,J,S, A3) 

As an example we will give an idea of such an impossibility result: In order 
to prove the first line of theorem 5 we have to find an invariant E (a 

Fig. 2. Nonsimple modular Petri nets "below" A. 



10o4 Priese 

property of nets) such that E holds for some Petri net, E is invariant under 
prompt  realization (i.e., if M realizes N promptly and E holds for N, then E 
also holds for M),  but no net of PN(U, F, J,  S, Ai) fulfills E. As E we can 
use the following: 

E holds for N :~ 

ziP C_ Ou: ziP, Pl I / 0  procedures for N: 3So~ Su: 

(i) P~ C_ P 
(ii) Vs'ESN: VpEP:  s o ~ s '>-s'(p)=O 

N , P  I 

(iii) Vs'~Su: s o --* s ' ~  
N , P  I 

3k E IM: 3g, g': s '  = g and gPg'  and 'q'g: 
k 

g' ~ g > 3 p E P :  g ( p ) >  0 

and 3s+: 3pEP:  g'=s + and s + ( p ) > 0  
(iv) Vs, s 'E Su: Vp ~ INUON: SPS' >- 

3s;E SA: sPls; and s;(p) = s'(p) 

Open Questions: 
Let {B l . . . . .  B,} be a base for serial modules. Is {B 1 . . . . .  B,, F, J)  then 

a base for Petri nets? 
Serial modules, see Keller (1974), are APA nets with the restriction that 

at most one signal operates in the whole net. This is equivalent to the 
concept of normed networks of R6dding and ROdding, see, e.g., ROdding 
and R6dding (1979). A set M is a base for some class C if C = APA(M).  
(Conjecture: This is not true.) 

Does there exist a decision procedure that tells whether any given set M 
of automata is a base for serial modules or for Petri nets? 

For further impossibility results it may become necessary to state more 
restrictions on the allowed interface coding r  as the quite reasonable 
property of "standard coding" in Priese (1980b)-- that  are true for all 
constructions of the "posit ive" realizations results. This leads to the 
(metamathematical) question, whether there are alternative "smooth"  axioms 
on realizations adequate for asynchronous, concurrent computations with 
the same hierarchy results. 

REFERENCES 

Berthelot, G., Roucairol, G., and Valk, R. (1979). "Reductions of Nets and Parallel Programs," 
in Net Theory and Applications, Bauer, W. (Ed.), Lecture Notes in Computer Science 84. 

Hack, M. (1973). "Analysis of Production Schemata by Petri-Nets." MAC TR-94, Project 
MAC, MIT, Cambridge, Massachusetts. 



Modular Implementation of Concurrency !005 

Hack, M. (1975). "Petri Net Languages," Comp. Structure Group Memo 124, Project MAC, 
Cambridge, Massachusetts. 

Hack, M. (1976). "The Equality Problem for Vector Addition Systems is Undecidable," Theor. 
Comp. Sci., 2, 77-95. 

Jensen, K. (1980). "A Method to Compare the Descriptive Power of Different Types of Petri 
Nets," in MFCS 1980, Lecture Notes in Computer Science Vol. 88. 

KasaJ, T. and Miller, R. (1979). "Homomorphism between Models of Parallel Computation," 
IBM RC 7796 (#33742). 

Keller, R. (1974). "Towards a Theory of Universal Speed-Independent Modules." tEEE Trans. 
Comput., C-23, 1-33. 

Keller, R. (1975). "A Fundamental Theorem of Asynchronous Parallel Computation," in 
Parallel Processing, Feng, T. Y., ed. Springer-Verlag, New York. 

Kosaraju, S. (1973). "Limitation of Dijkstra's Semaphore Primitives and Petri Nets," Tech. 
Rep. 25, Johns Hopkins Univ., Baltimore. 

Kwong, Y. S. (1977). "On Reduction of Asynchronous Systems," Theor. Comput. Sci., 5, 
25-50. 

Lipton, R. (1976). "The Reachability Problem Requires Exponential Space," Research Report 
62, Yale University. 

Patil, S. ( 197 I). "Limitations and Capabilities of Dijkstra's Semaphore Primitives for Coordi- 
nation among Processes," Comp. Struc. Group Memo 57, MIT, Project MAC, Cambridge, 
Massachusetts. 

Priese, L. (1980a). "On the Concept of Simulation in Asynchronous, Concurrent Systems," 
European Meeting on Cybernetics and Systems Research, Linz 1978; Proceedings in 
Progress in Cybernetics and Systems Research, Vol. II, Hemisphere, Washington, D.C. 

Priese, L. (1980b). "An Automatatheoretical Approach to Concurrency," Research Report 12, 
Series B, Digital Syst. Lab., Helsinki Univ. of Technology. 

Rrdding, D., and R/Sdding, W. (1979). "Networks of Finite Automata," European Meeting on 
Cybernetics and Systems Research, Wien, 1976; in Progress in Cybernetics and Systems 
Research, Hemisphere. 


